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History



The Beginning of Mars Polar Observation
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Figure 4. Composite images of Mars on 1909 September 27 at 12h 35m, 13h 35m and at 1909: First Pic du Midi
14h 20m (times in Greenwich Mean Astronomical Time [GMAT] reckoned from noon, as photographs of Mars
was usual at the time). Each image represents the superposition of several images from the

same plate, in order to reduce the graininess and enhance the subtle details. (DO“fUS , 20 10)



At the Dawn of Robotic Exploration
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Leighton and Murray (1966)
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IVIars Seasonal CO, Cycle
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What is the RSPC?

Mariner 9 Image Mogaic d ,
Murray & Malin /
(1973) f

SOUTH POLE

* “CO, ice could not survive in contact with
low-albedo material.”

* “Therefore, a residual water-ice cap is much
more stable than a solid CO, one on Mars in
the summertime.”



What is the RSPC?

Viking OrbiterN\mage Mosaic
teffer (1979)
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¢ “CO, ice could not survive in contact with ¢ “Throughout the summer, the polar frost
low-albedo material.” remained at the temperature of solid CO,.”

* “Therefore, a residual water-ice cap is much ¢ “Thus Mars appears to have a residual polar
more stable than a solid CO, one on Mars in cap of CO, in the south and one of H,0 in
the summertime.” the north.”



A Puzzle: Why CO, at the South Pole?

* “[From occultation] it can be seen that the
southern residual cap must be higher than the
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A Puzzle: Why CO, at the South Pole?

Mariner 9 Image
Murray & Malin;

SOUTH ;’Ok!

“[From occultation] it can be seen that the
southern residual cap must be higher than the
northern one by at least 2 km.”

“Any solid CO, in the south would be in contact
with atmospheric CO, at a pressure lower by
about 2 mbar than in the north”

“There is no reason to suppose a permanent CO,
southern cap would be at a systematically lower
temperature than the northern one.”

“Hence, solid CO, deposits in the south would be
out of equilibrium and would gradually be
transferred to the north...in well under 1000
years.”

“Excess solid carbon dioxide is probably present
[buried] in the north residual cap.”



Is the CO, ice is disappearing?
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“The erosion implies that this
reservoir is not in equilibrium
with the present environment
and that global climate change
is occurring on Mars.”



Is the CO, ice is disappearing?

- Malin+ (2001)

“The erosion implies that this
reservoir is not in equilibrium
with the present environment
and that global climate change
is occurring on Mars.”

“These and other observations
suggest that the present
martian environment is neither
stable nor typical of the past.”



s the CO2 ice is disappearing?

190

Surface Temperature

* “The implication is that both polar caps are predominantly composed of H,0
ice, although a veneer of CO, ice covers the south cap.”

* “The upper 8-m layer will be removed in a few martian centuries, [but likely]
has some rejuvenation mechanism.”



Difficult to Model the RSPC

to ' ' ' ' ' * “Models conventionally treat surface CO2 ice
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Or maybe not?

Erosional ages

Mars year

Depositional ages

| |
Thomas+ (2016) 31 Mars year~

“We find the mass balance in Mars years 9—-31 to be -6 to +4 km3 per martian
year, or roughly -0.039% to +0.026% of the mean atmospheric CO, mass per
martian year.”



Or maybe not?

Daily Average Pressures
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“When compared to Viking Lander 2 data, the REMS daily average pressures
show no evidence yet for the 1-20 Pa increase expected from the possible
loss of CO, from the south polar residual cap.”



In 2010: RSPC is only known perennial CO,

]
Plaut+ (2007)

“It would have to be considered an
extraordinary accident if the total
CO, released over the history of
Mars and now available at the
surface should just exactly equal
that required for the formation of

the observed annual caps: a small
proportion less and hardly any
annual caps would form at all; any
larger amount would be in the
form of buried solid.”

—Murray and Malin (1973)
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Phillips# (2011) \ :

“If released into the atmosphere at times of high obliquity, the CO,
reservoir would increase the atmospheric mass by up to 80%.”




The MCID has layers

“We find three distinct CO, subunits, each capped by a bounding layer (BL).”
--Bierson+ 2016



Schematic Polar Stratigraphy

67 Residual South Polar Cap (RSPC) Key: A
7
|Massive CO, Ice Deposit (MCID)
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Outstanding Questions

1. How was the massive CO,
deposit emplaced with its
observed stratigraphy?

3. Will the permanent CO,
always be at the south pole
(not the north or both)?
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“CO, ice is deposited over much of the poles during low obliquity periods.”



Previous model of MCID emplacement
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 “CO,iceis deposited over much of the poles during low obliquity periods.”
 “Aremnant is sequestered below a water ice deposit (BL subunits), removing it
from contact with the atmosphere.”



Previous model of MCID emplacement
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 “CO,iceis deposited over much of the poles during low obliquity periods.”

 “Aremnant is sequestered below a water ice deposit (BL subunits), removing it
from contact with the atmosphere.”

e “Our base model does not sequester the [CO,] ice, and it returns to the atmosphere
at the end of each period of high obliquity.”



Previous model of MCID emplacement
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“CO, ice is deposited over much of the poles during low obliquity periods.”

 “Aremnant is sequestered below a water ice deposit (BL subunits), removing it
from contact with the atmosphere.”

* “Our base model does not sequester the [CO,] ice, and it returns to the atmosphere
at the end of each period of high obliquity.”

* “However, the presence of the [massive CO,] unit requires some mechanism to

stabilize and protect the deposit in periods of high obliquity.”



Methods



Our Model Set-Up
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AC02 ~ 0.7
ECOZ ~ 0.8

Model the Modern CO, Cycle

Incoming solar flux = = Qutgoing thermal flux
Condensed CO, Kelly et al. (2006) data
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Our Model Set-Up

1D Energy balance:
1 - 2<1ZC3>Z|> 3 /‘ Cozgas?
OF i/‘ ; ¢

V o ¥
= e

Mean Annual Equilibrium Mean Annual
Frost Temperature Equilibrium Pressure

Any orbit

* Emissivity: 0.8, Albedo: A¢p, = 0.532 + 0.511X cos(Osp4+)

* CO, mass: atmosphere + deposit = 5.4 X 10 kg

 Account for elevation change from finite cap thickness, with
MCID area = RSPC area (8 X 109 m?)

e Different set-up compared to previous models: Vapor contact
between MCID and atmosphere at all times.



Results!



Mars’ Pressure History
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MCID Stratigraphic History
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Modeled & Observed MCID Stratigraphy

Modeled Observed

CO, layer mass depends on amplitude of obliquity maxima,
H,0 BL thickness depends on time between obliquity maxima



Comparison to observation
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Does H,0 seal in and/or insulate CO,?

e |fthe MCID is sealed in, the same “extraordinary accident” of Mars’ modern
atmospheric mass exists.

* “The [RSPC CO,] reservoir is small and cannot function as a long-term buffer to the
more massive atmosphere.” —Byrne and Ingersoll (2003)

* How did the (dark, less volatile) H,0 layer become emplaced?

“Solid CO, can not survive burial beneath any low-albedo [material] "dirt," even
temporarily, since the subsurface temperature exceeds the sublimation point of the
solid and CO, will escape as a gas.

Any burial process ... will necessarily be slow, with individual particles warming the CO,
around them, and sinking from solar view by subliming CO, into the atmosphere.

Thus, a scum layer of dark (low albedo) material may be buried beneath a topmost
layer of frost, but as soon as this topmost layer is removed, the dark dust [or H,0 ice]
will heat up and any CO, beneath it will escape.” —Murray and Malin (1973)



Does H,0 seal in and insulate CO,?
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* “All of these smaller troughs, depressions, and pits appear to result from
erosion and removal of unit A,; [the massive CO, deposit], with a strong
component of sublimation and collapse.”

* “The fracturing, not found in other SPLD units, may be a response to
continuing unit A,; [MCID] sublimation after the pits had first formed.” —
Phillips+ 2011



Does H,0 seal in CO,?
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Does H,0 seal in CO,?




Does H,0 insulate CO,?
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H,O Lag Layer and RSPC Formation
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Schematic H,O Layer Formation
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Is the RSPC a “Fantastic Coincidence”?

Exposed “scum” But then, 1D: duration of end- Pitting a
(H,0) dark, less pressure summer H,0 exposure  complication, in 2D
volatile, destabilizes increases! can adjust, controlling  4,,ration and area
CO, beneath Restabilizes CO, amount Of, O, can adjust
sublimation
CO, CO,
([ HO0 222 | B BN | e
Cco, Cco, Cco,

MCID || MCID || MCID || MCID

Spring to summer Spring to summer

Murray and Malin (1973)

RSPC is expected if the CO, beneath the H,0 can exchange mass
with the atmosphere; i.e., MCID-atmosphere exchange.




Predictions for >10° yr timescales



Why is the permanent CO, in the south?

“There is no reason to suppose a permanent CO, southern cap would be
at a systematically lower temperature than the northern one.”
— Murray and Malin (1973)
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Will perennial northern CO, ever exist?

“We would expect ... CO,residual ice caps to swap hemispheres as the
argument of perihelion progresses.” — Guo+ 2010
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obliquity (deg)
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Model consistent with altitude of the MCID
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Model consistent with altitude of the MCID
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Conclusions



Conclusions 1

1. How was the massive CO,
deposit emplaced with its
observed stratigraphy?
Equilibrated co-evolution with the
atmosphere, driven by orbital
forcing. H,0 impurities
accumulate into lag deposits.

BLi”

Negative feedback between
surface CO, ablation, dark
lag exposure, and basal CO,
sublimation.

3. Will the permanent CO,

always be at the south pole

(not the north or both)?

The albedo/emissivity of the

southern CO, is higher,

overwhelming the lower _ y ;
elevation of the northern cap. [, £ ot e




Conclusions 2
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Questions?



